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AbstractÐWith the rapid development of e-commerce and
digital fashion, image-based virtual try-on (VTON) has attracted
increasing attention. However, existing VTON models often suffer
from artifacts such as garment distortion and body inconsistency,
highlighting the need for reliable quality evaluation of VTON-
generated images. To this end, we construct VTONQA, the
first multi-dimensional quality assessment dataset specifically
designed for VTON, which contains 8,132 images generated by
11 representative VTON models, along with 24,396 mean opinion
scores (MOSs) across three evaluation dimensions (i.e., clothing
fit, body compatibility, and overall quality). Based on VTONQA,
we benchmark both VTON models and a diverse set of image
quality assessment (IQA) metrics, revealing the limitations of
existing methods and highlighting the value of the proposed
dataset. We believe that the VTONQA dataset and corresponding
benchmarks will provide a solid foundation for perceptually
aligned evaluation, benefiting both the development of quality
assessment methods and the advancement of VTON models.

Index TermsÐVirtual try-on, dataset, benchmark, subjective
experiment, large multi-modal models

I. INTRODUCTION

Image-based virtual try-on (VTON) [1]±[3] has emerged

as a promising technology that enables realistic visualization

of garments on human images (see Figure 1), with broad

applications in e-commerce, virtual reality, and digital fashion.

However, current VTON models often struggle to generate

high-quality results, exhibiting artifacts such as blurred faces

and garments, distorted body structures, and failures in proper

clothing transfer, which severely degrade user experience

and practical applicability. Therefore, effective evaluation of

VTON-generated images is crucial for monitoring percep-

tual quality in real-world VTON applications, benchmarking

VTON models, and guiding model improvement.

Existing evaluations of VTON-generated images mainly rely

on objective metrics, including the distribution-based measure

FrÂechet Inception Distance (FID) [4], the perceptual similarity

metric Learned Perceptual Image Patch Similarity (LPIPS) [5],

and traditional pixel-level criteria such as Structural Similarity

Index (SSIM) [6] and Peak Signal-to-Noise Ratio (PSNR).

However, these objective metrics often exhibit weak corre-

lation with human perception, highlighting the importance

of subjective quality assessment. In contrast, visual quality

assessment (QA) methods [7]±[15] typically learn a network

to regress quality scores based on human-annotated datasets

and are inherently aligned with human perception. However,

existing QA datasets are primarily designed for natural images

or specific Artificial Intelligence (AI)-generated images, and
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Fig. 1: Illustration of the image-based virtual try-on pipeline.

none of them specifically target the VTON task. Due to the

substantial differences between VTON-generated images and

natural images in distortion types, as well as differences in

reference information formats and distortion characteristics

compared to other AI-generated content [12], [13], [16], QA

models trained on existing datasets are often inapplicable to or

perform poorly on VTON-generated images, highlighting the

urgent need for a QA dataset specifically designed for VTON.

To bridge this gap, we construct VTONQA, the first

large-scale multi-dimensional quality assessment dataset for

VTON-generated images, comprising 8,132 images from 11

representative VTON models and 24,396 mean opinion scores

(MOSs) across three evaluation dimensions: clothing fit, body

compatibility, and overall quality. Specifically, the VTON-

generated images are synthesized by applying try-on garments

from 8 categories to 183 reference person images spanning 9

categories. The VTON models include classical warp-based

[1], [3], [17], [18], diffusion-based [2], [19]±[22], and closed-

source methods [23], [24]. Subsequently, 40 subjects are

recruited to annotate the images across the three evaluation di-

mensions, under the supervision of a professional team of im-

age processing researchers to ensure annotation quality. Based

on the VTONQA dataset, we benchmark the try-on capabilities

of 11 VTON models and the quality assessment capabilities

of 17 image quality assessment (IQA) metrics. All VTON

models are evaluated in an inference-only setting, without any

additional fine-tuning or retraining on VTONQA. For quality

assessment, we include both full-reference and no-reference

IQA metrics, spanning traditional and deep learning±based

methods, and show that fine-tuned models achieve higher

correlation with human perceptual judgments, highlighting the

significance of the proposed VTONQA dataset.

We hope that the proposed VTONQA dataset, together

with the provided benchmarks, will foster in-depth research

on objective quality assessment methods for VTON-generated

images that better align with human perception, ultimately
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advancing the development of VTON models.

In summary, the main contributions of this work are:

• To the best of our knowledge, we are the first to conduct

a comprehensive subjective quality assessment study of

VTON-generated images.

• We build the first multi-dimensional quality assessment

dataset for VTON-generated images, which comprises

8,132 images and 24,396 MOS annotations across three

dimensions (i.e., clothing fit, body compatibility, and

overall quality).

• Based on the VTONQA dataset, we benchmark the per-

formance of 11 VTON models and the quality assessment

capabilities of 17 IQA metrics.

II. RELATED WORK

A. Virtual Try-On Methods and Datasets

Recent years have witnessed rapid progress in virtual try-on

(VTON) research. Representative methods such as EfficientVI-

TON [25], CatV2TON [22], and StableVITON [2] focus on

improving garment detail preservation, generation quality, and

inference efficiency. While early studies mainly addressed

single-view image-based try-on, subsequent works [26] have

extended toward multi-view settings and 3D modeling to

better capture body±garment interactions. Nevertheless, single-

view VTON [1]±[3], [17]±[24]. remains the most mature

and widely adopted paradigm, forming the basis of many

recent approaches. Existing VTON datasets are dominated by

VITON-HD [1] and DressCode [27]. VITON-HD provides

high-resolution front-view images of upper-body female sub-

jects, whereas DressCode extends to full-body images, both

genders, and multiple garment categories. Despite their scale

and resolution, these datasets exhibit limited diversity in pose,

body shape, garment structure, and background complexity,

which restricts their ability to reflect real-world scenarios and

to comprehensively evaluate modern VTON models.

B. Evaluation of Virtual Try-On Results

Evaluating the quality of virtual try-on results remains

challenging. Most existing studies rely on objective image

similarity metrics, including SSIM [6], LPIPS [5], FID [4],

and KID [28], which measure pixel-level fidelity, perceptual

similarity, and distributional realism. These metrics are effi-

cient and widely adopted as standard evaluation tools.

However, objective metrics often fail to align with human

perceptual judgments, particularly in virtual try-on scenarios

where garment alignment, visual plausibility, and body±cloth

interaction are highly subjective. Although some works [1]

provide qualitative visual comparisons, systematic subjective

studies with quantitative human ratings remain scarce. This

mismatch between objective metrics and human perception

highlights the necessity of incorporating subjective evaluation

to achieve more reliable and perceptually meaningful assess-

ment.

T-shirt Shirt Sweater Dress

Maxiskirt Skirt Shorts Trousers

Fig. 2: Examples for each clothing category in VTONQA.
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Fig. 3: Examples for each human body category in VTONQA.

III. DATASET AND EVALUATION SETUP

A. Dataset construction

For constructing paired data suitable for virtual try-on

algorithms, we organize garments into 8 categories, with a

total of 80 images:Upper-body: T-shirt, shirt, sweater; Lower-

body: shorts, trousers, maxiskirt, skirt; Full-body: dress.

Human subjects are grouped into 9 demographic categories,

including Black, Caucasian, Asian, children, young, elderly,

pregnant, men, and women. In addition to these major cat-

egories, the dataset also covers finer-grained variationsÐsuch

as different body shapes and body proportionsÐwhich are

present in the data but not explicitly used as classification

labels during dataset construction. This design allows the

dataset to maintain structured organization while still capturing

the natural diversity of real-world human appearances.A total

of 189 human images were collected. Figure 2 and Figure 3

show the dataset composition.

The final paired dataset comprises 748 garment±person

pairs, resulting in 8,132 images generated through various

virtual try-on algorithms.

B. Virtual try-on algorithms

To generate virtual try-on images, we include a diverse set

of representative algorithms spanning traditional and modern

paradigms. Specifically, as shown in Table I, our evaluation

covers: (1) Flow-based and warp-based two-stage archi-

tectures, which represent the classical pipeline of align-

ment±warping followed by refinement. (2) Diffusion-based



Model Year Resolution Type

VITON-HD [1] 2021 1024x768 Classical (Warp-based)
TPD [3] 2024 384x512 Classical (Warp-based)
DS-VTON [17] 2025 768×1024 Classical (Warp-based)
FS-VTON [18] 2022 256×192 Classical (Warp-based)

Ladi-VTON [19] 2023 1024×768 Diffusion-based
CAT-DM [20] 2024 512×384 Diffusion-based
OOTDiffusion [21] 2024 1024×768 Diffusion-based
StableVITON [2] 2024 1024×768 Diffusion-based
CatV2TON [22] 2025 192×256 Diffusion-based

Kling [23] 2014 512x512-4096x4096 Closed-source
LinkFox [24] 2024 384x384-4096x4096 Closed-source

TABLE I: Categories of virtual try-on algorithms used in our

evaluation.

Fig. 4: Illustration of the GUI used in the subjective study.

virtual try-on models, which leverage generative diffusion

processes to improve realism and garment fidelity. (3) Several

closed-source commercial or semi-commercial systems,

included to provide additional references to real-world per-

formance.

This comprehensive selection ensures that our dataset and

evaluation protocols remain compatible with both earlier

pipelines and the latest state-of-the-art virtual try-on tech-

niques.

C. Subjective Experiment

After obtaining the virtual try-on results generated by all

algorithms, we organized the images into eight groups. For

each group, five independent volunteers were recruited to

provide subjective ratings. The evaluation was conducted along

three dimensions:

(1) Clothing fit: This metric evaluates whether the target

garment is correctly and completely worn in the virtual try-on

result. (2) Body compatibility: This metric reflects whether

the human body shape and pose remain physically consistent

after virtual try-on. (3) Overall quality: This metric mea-

sures whether the final synthesized result aligns with human

aesthetic perception.

The detailed scoring criteria are summarized in Figure 5.

Following data collection, all scores were normalized to ensure

consistency across evaluators and to facilitate subsequent

statistical analysis and comparison with baseline algorithms.

And the scoring interface is shown in the figure 4.

Cloth:
T-shirt

Person:
pregnent 37.33 54.26 68.52

(a) Clothing fit

Cloth:
dress

Person:
children 22.65 48.48 63.82

(b) Body compatibility

Cloth:
trousers

Person:
man 33.73 41.69 65.31

(c) Overall quality

Fig. 5: Examples from the proposed VTONQA dataset. We

illustrate poor (20±40), average (40±60), and good (60±80)

cases for three evaluation dimensions: (a) clothing fit, (b) body

compatibility, and (c) overall quality.

D. Subjective Data Processing

We follow the subjective score processing protocol proposed

in [29] to perform outlier detection and subject reliability

screening. For each image sample, an individual rating is

considered an outlier if it deviates from the mean score of

that image by more than (2σ) (for approximately normal score

distributions) or (
√
20σ) (for non-normal distributions). Fur-

thermore, if more than 5% of a subject’s ratings are identified

as outliers and these outliers are approximately symmetrically

distributed across high and low score ranges, all ratings from

that subject are excluded.

After filtering, the remaining valid scores are normalized us-

ing within-subject Z-score normalization and linearly mapped

to the range ([0, 100]). The Mean Opinion Score (MOS) for

each image is then computed by averaging the normalized

scores across all valid subjects, formulated as:

MOSj =
1

Nj

Nj∑

i=1

(rij − µi)/σi + 3

6
× 100 (1)

where rij denotes the raw score given by the i-th subject

to the j-th image, µi and σi represent the mean and standard

deviation of all scores provided by subject i, respectively, and

Nj is the number of valid ratings for image j.

E. Multi-dimensional Analysis

As shown in Figure 7, the performance across the three

evaluation dimensions exhibits consistent patterns. Overall,



(a) Garment Categories

(b) Human Body Categories

Fig. 6: MOS distributions of the three evaluation dimensions (clothing fit, body compatibility, and overall quality) across (a)

eight garment categories and (b) nine human body categories, respectively.

Fig. 7: Comparison of the 11 VTON models based on average

clothing fit, body compatibility, and overall quality scores.

the two closed-source systems outperform all open-source

virtual try-on models by a clear margin. Among the remaining

algorithms, DS-VTON achieves the best performance within

the classical (warp-based) category, and StableVITON leads

the diffusion-based methods. While each class of algorithms

demonstrates strengths on specific dimensions, the perfor-

mance gaps among open-source methods remain relatively

moderate.

The overall distribution of subjective scores is shown in

Figure 8. The scores primarily fall within the range of 20±80,

where values between 60±80 indicate strong performance and

those between 20±40 reflect weaker results. As illustrated

by the distribution, most virtual try-on algorithms achieve

relatively high scores in body compatibility, suggesting that

current models generally preserve human pose without in-

troducing significant structural deviations. In contrast, far

fewer methods perform well in clothing fit, that is, accurately

fitting the target clothing onto the person. This highlights a

substantial performance gap when algorithms operate under

complex or realistic scenarios. Furthermore, the distribution

indicates that overall quality are more heavily influenced by

body compatibility than by clothing fit alone.

Beyond the overall evaluation, we further examine garment

compatibility as the primary dimension of interest, evaluating

algorithm performance from two perspectives: score variations

across garment categories and across human body categories.

The main observations are summarized as follows:

Fig. 8: MOS distribution histograms and kernel density curves

for clothing fit, body compatibility, and overall quality.

Garment compatibility. As shown in Fig. 6(a), virtual try-

on performance for upper-body and full-body garments is

consistently superior to that for lower-body garments. This per-

formance gap is substantial, indicating that current algorithms

handle upper-body contours and global garment structures

more reliably, while remaining more sensitive to deformation-

prone lower-body garments.

Performance across human body categories. As illustrated

in Fig. 6(b), the score distributions across different human

body categories exhibit only minor variations, suggesting that

existing virtual try-on algorithms maintain relatively strong

generalization across diverse body types. Notably, the pregnant

category shows a slightly higher proportion of high scores

compared to other categories. This trend is likely attributable

to the dataset construction, as most evaluated pregnant subjects

involve upper-body garments only, for which the majority of

algorithms demonstrate stronger and more stable performance.

IV. ANALYSIS

A. Basic Analysis

The table II the processed scores for one evaluation di-

mension (Clothing Fit) across different garment categories and

human body categories. Clearly, the closed-source algorithms

outperform others across all aspects. Notably, among the open-

source methods, DS-VTON and StableVITON demonstrates

comparable performance to closed-source algorithms in spe-

cific areas, such as upper-body garments.



Methods
Clothing Categories Human Body Categories

Overall
T-shirt Shirt Sweater Shorts Trousers Maxiskirt Skirt Dress Black Caucasian Asian Children Young Elderly Pregnant Man Woman

♠VITON-HD [1] 27.21 25.78 25.77 26.58 25.07 26.28 27.73 25.25 26.22 26.22 26.28 25.80 26.62 26.12 25.73 26.71 26.71 26.26
♠TPD [3] 56.89 54.56 53.78 55.11 56.85 56.62 53.66 56.95 56.10 56.09 54.87 54.74 55.55 54.16 56.84 55.91 55.28 55.48
♠DS-VTON [17] 60.39 61.15 59.28 49.66 49.57 53.86 51.04 54.01 56.19 56.60 55.37 52.83 55.24 54.21 57.64 56.23 54.72 55.64
♠FS-VTON [18] 32.15 30.60 31.58 28.43 25.89 28.17 30.57 28.96 31.09 30.66 29.34 27.66 29.49 29.87 35.39 28.35 29.89 29.79

♡Ladi-VTON [19] 49.81 49.17 47.28 44.80 47.60 52.69 47.45 46.62 47.10 48.89 49.28 45.33 49.07 44.50 48.42 49.05 49.01 48.21
♡CAT-DM [20] 56.03 56.67 55.03 54.86 54.83 59.73 55.08 52.82 58.30 56.30 56.11 52.83 54.42 56.34 55.57 53.96 54.25 55.65
♡OOTDiffusion [21] 37.63 39.16 38.90 36.64 40.38 38.99 38.88 32.94 39.58 38.32 37.31 37.43 37.79 38.70 39.21 37.70 38.02 38.07
♡StableVITON [2] 56.22 56.21 55.44 58.93 56.54 60.18 59.32 52.72 58.00 56.91 57.17 57.14 55.85 56.59 55.67 55.41 56.10 56.68
♡CatV2TON [22] 54.18 53.59 53.48 47.27 46.84 51.15 47.86 52.15 51.80 51.43 51.06 49.07 51.10 50.60 52.46 50.95 51.14 51.21

♣Kling [23] 66.46 67.00 67.87 65.40 66.34 65.50 64.86 66.16 66.00 66.49 66.50 65.90 66.40 64.77 65.36 67.13 66.15 66.35
♣LinkFox [24] 65.56 65.98 64.32 66.47 66.66 64.47 64.17 64.17 64.29 65.02 65.55 64.34 65.69 64.19 64.57 66.04 65.62 65.28

TABLE II: Evaluation of 11 representative VTON models based on the overall quality score. We report both the overall

average score and the scores across 8 garment categories and 9 human body categories. ♠ classical (warp-based) method,

♡ diffusion-based method, and ♣ closed-source method. The best results are highlighted in red, the second-best results are

highlighted in blue, the third-best results are highlighted in green.

Methods
Clothing Fit Body Compatibility Overall Quality

ρs ρk ρp ρs ρk ρp ρs ρk ρp

♠MSE -0.035 -0.026 -0.029 0.312 -0.219 -0.291 0.269 0.189 0.248
♠PSNR -0.035 -0.026 -0.101 0.312 0.219 0.359 0.269 0.189 0.313
♠SSIM [6] 0.056 0.038 0.079 0.330 0.225 0.330 0.291 0.198 0.295
♠FSIM [30] 0.080 0.052 0.048 0.408 0.285 0.439 0.374 0.261 0.399
♠SCSSIM [31] 0.039 0.027 0.067 0.316 0.216 0.315 0.277 0.189 0.279
♠GMSD [32] 0.108 0.072 0.117 0.197 0.133 0.192 0.195 0.132 0.199

♡BRISQUE [33] 0.101 0.065 0.143 0.178 0.118 0.168 0.173 0.115 0.174

♣LPIPS(alex) [5] 0.062 0.036 0.083 0.429 0.302 0.497 0.392 0.276 0.453
♣LPIPS(vgg) [5] 0.140 0.087 0.192 0.493 0.347 0.552 0.457 0.321 0.516
♣AHIQ [34] -0.072 -0.051 -0.068 0.217 0.148 0.261 0.177 0.120 0.215

♢CNNIQA [35] 0.033 0.023 -0.110 0.113 0.079 0.070 0.113 0.080 0.045
♢WaDIQaM [36] -0.003 0.001 -0.140 0.087 0.066 0.813 0.079 0.061 0.049
♢NIMA [37] 0.319 0.216 0.297 0.432 0.297 0.509 0.432 0.295 0.497
♢HyperIQA [38] 0.134 0.076 0.112 0.288 0.183 0.431 0.279 0.176 0.398
♢TOPIQ* [39] 0.291 0.194 0.222 0.367 0.258 0.503 0.393 0.275 0.447
♢MANIQA* [7] 0.673 0.481 0.633 0.665 0.481 0.801 0.707 0.512 0.797
♢CLIPIQA* [8] 0.442 0.311 0.419 0.301 0.218 0.455 0.372 0.266 0.500

TABLE III: Comparison of IQA metrics on the VTONQA

dataset for predicting clothing fit, body compatibility, and

overall quality scores. SRCC (ρs), KRCC (ρk), and PLCC

(ρp) are reported. ♠ traditional full-reference IQA metrics, ♡
traditional no-reference IQA metrics, ♣ deep learning±based

full-reference IQA methods, and ♢ deep learning±based no-

reference IQA methods. Fine-tuned results are marked with *.

The best results are highlighted in red, and the second-best

results are highlighted in blue.

B. Baseline Experiment

We evaluate a diverse set of baseline methods, including:

traditional full-reference (FR) IQA metrics, traditional no-

reference (NR) IQA metrics, deep learning±based FR IQA

methods, and deep learning±based NR IQA methods. Among

the deep learning±based NR IQA approaches, several models

are further fine-tuned using the proposed subjective dataset.

The resulting values are reported in Table III.

From the table, several observations can be made:

First, traditional IQA metricsÐincluding both full-reference

(FR) and no-reference (NR) methodsÐgenerally show low

correlation with human perception of virtual try-on results.

Pixel-level similarity metrics are particularly inconsistent, fail-

ing to capture perceptual effects caused by garment deforma-

tion and body±garment interactions, while conventional NR-

IQA methods based on natural image statistics have limited

modeling capability for this scenario.

Second, perceptual distance±based metrics achieve better

performance on body compatibility and overall quality but

remain less effective for accurately assessing clothing fit.

Third, deep learning±based NR-IQA methods substantially

outperform traditional metrics, with transformer- or multi-

modal feature±based approaches (e.g., MANIQA) achieving

the best results. Notably, evaluation difficulty varies across

perceptual dimensions, with clothing fit emerging as the most

challenging to predict reliably.

C. Future work

Considering the current limitations of the dataset, future

work will focus on expanding the dataset and enriching the

evaluation framework.

Dataset Expansion: Although the dataset covers diverse

garment±person pairs, samples per category are still limited.

Future work will expand the dataset by increasing garment

diversity and the number of human subjects for more compre-

hensive pairing. While prioritizing realism, the dataset contains

images with varying quality (e.g., resolution and lighting).

As it is designed primarily for evaluation, future work will

standardize quality and reorganize the dataset into a structured

form suitable for next-generation virtual try-on models.

Enhanced Evaluation Framework: Beyond global subjective

scores, future extensions will incorporate fine-grained dis-

tortion annotations to highlight local misalignment, garment

deformation, and visual artifacts, enabling more precise diag-

nosis of algorithm weaknesses and targeted improvements for

virtual try-on models.

V. CONCLUSION

In this work, we present the first quality assessment dataset

for VTON, termed VTONQA, which comprises 8,132 VTON-

generated images and 24,396 MOS annotations across three

perceptual dimensions, namely clothing fit, body compatibility,

and overall quality. Through comprehensive multi-dimensional

subjective assessments of representative VTON methods, we

identify key factors affecting try-on quality and expose the

limitations of existing objective metrics, highlighting the

importance of subjective supervision. We believe that the

proposed dataset and evaluation framework will facilitate the

development of more perceptually aligned quality assessment

methods and more reliable VTON algorithms.
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