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DiffFashion: Reference-based Fashion Design with

Structure-aware Transfer by Diffusion Models

Shidong Cao∗, Wenhao Chai∗, Shengyu Hao, Yanting Zhang, Hangyue Chen†, and Gaoang Wang†, Member, IEEE

Abstract—Image-based fashion design with AI techniques has
attracted increasing attention in recent years. We focus on a
new fashion design task, where we aim to transfer a reference
appearance image onto a clothing image while preserving the
structure of the clothing image. It is a challenging task since there
are no reference images available for the newly designed output
fashion images. Although diffusion-based image translation or
neural style transfer (NST) has enabled flexible style transfer, it
is often difficult to maintain the original structure of the image
realistically during the reverse diffusion, especially when the
referenced appearance image greatly differs from the common
clothing appearance. To tackle this issue, we present a novel diffu-
sion model-based unsupervised structure-aware transfer method
to semantically generate new clothes from a given clothing image
and a reference appearance image. In specific, we decouple the
foreground clothing with automatically generated semantic masks
by conditioned labels. And the mask is further used as guidance
in the denoising process to preserve the structure information.
Moreover, we use the pre-trained vision Transformer (ViT)
for both appearance and structure guidance. Our experimental
results show that the proposed method outperforms state-of-
the-art baseline models, generating more realistic images in
the fashion design task. Code and demo can be found at
https://github.com/Rem105-210/DiffFashion.

Index Terms—Fashion design, diffusion models, structure-
aware

I. INTRODUCTION

Image-based fashion design with artificial intelligence (AI)

techniques [1]–[6] has attracted increasing attention in recent

years. There is a growing expectation that AI can provide

inspiration for human designers to create new fashion designs.

One of the emerging tasks in fashion design is to add spe-

cific texture elements from non-fashion domain images into

clothing images to create new fashions. For example, given

a clothing image, a designer may want to generate a new

clothes design with the appearance of another domain object

as a reference, as shown in Fig. 1.

Generative adversarial network (GAN)-based methods [2],

[7], [8] can be adopted in the common fashion design tasks
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to generate new clothes. However, GAN-based methods can

hardly have good control over the appearance and shape of

clothes when transferring from non-fashion domain images.

Recently, diffusion models [9]–[11] have been widely explored

due to the realism and diversity of their results, and have

been applied in various generative areas, such as text image

generation [12], [13] and image translation [14]. Some ap-

proaches [15], [16] consider both structure and appearance in

image transfer. Kwon et al. [15] use a diffusion model and

a special structural appearance loss for appearance transfer,

which performs well in transforming the appearance between

similar objects, such as from zebras to horses and from cats

to dogs.

However, there are two main challenges when applying

the commonly used image transfer methods to the reference-

based fashion design task shown in Fig. 1. First, common

image transfer methods only consider the translation between

semantically similar images or objects. For example, the trans-

formation in [15] is based on the similarity of the semantically

related objects in vision transformer (ViT) [17] features. In

the reference-based fashion design task, the semantic features

of reference appearance images are always far different from

clothing images. As a result, commonly used image transfer

methods usually generate unrealistic fashions in this task and

difficult to transfer the appearance. Besides, These methods

only transfer the style or appearance, which hardly converts

the appearance to a suitable texture material by using a non-

clothing image. Second, image transfer methods [18] usually

require a large number of samples from both source and

target domains. However, there are no samples available for

newly designed output domains, resulting in a lack of guidance

during the transfer process. Thus, the generated new fashion

images are likely to lose the structural information of the input

clothing images.

To address the aforementioned issues, we propose an

unsupervised structure-aware transfer framework based on

diffusion named DiffFashion, which semantically generates

new clothes from a given clothing image and a reference

appearance image. The proposed framework is based on

denoising diffusion probabulistic models (DDPM) [9] and

preserves the structural information of the input clothing image

when transferring the reference appearance with three steps.

First, we decouple the foreground clothing with automatically

generated semantic masks by conditioned labels. Then, we

encode the appearance image with DDPM which is proven to

be the optimal transport process to keep the high-appearance

similarity and denoise the image with mask guidance to trans-

fer the structural information. Moreover, we use the ViT for
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Fig. 1. Two examples of a reference-based fashion design task. For a given image pair, i.e., a bag and a referenced appearance image, our method can
generate a new image with appearance similarity to the appearance image and structure similarity to the bag image.

both appearance and structure guidance during the denoising

process. This process is illustrated in Fig. 2.

Our contributions are summarized as follows:

• We propose a novel structure-aware image transfer frame-

work, which generates structure-preserving fashion de-

signs without knowledge about output domains.

• We keep the appearance information by the optimal

transport properties of the DDPM encoder.

• We employ mask guidance and ViT guidance to transfer

structural information in the denoising process.

• Extensive experimental results verify that our method

achieves state-of-the-art (SOTA) performance in clothing

design.

The outline of the paper is as follows: In Section II,

we review state-of-the-art (SOTA) fashion design and image

translation methods. Section III introduces the preliminary

background of DDPM. We introduce our proposed method

in Section IV. The experiments of our proposed method are

provided in Section V, followed by the conclusion and future

work in Section VI.

II. RELATED WORK

A. Fashion Design

Fashion design models aim to design new clothing from a

given clothing collection. Sbai et al. [3] use GAN to learn the

encoding of clothes, and then use the latent vector to perform

the stylistic transformation. Cui et al. [8] use the sketch image

of the clothes to control the generated structure. Good results

have been achieved in terms of structural control. Yan et al.

[2] use a patch-based structure to implement texture transfer

on generated objects. However, they cannot use other images

as texture references and their tasks is limited to generating

new samples from existing clothes collections. As a result, due

to the unreliable training problem of GAN, more advanced

methods are needed to achieve improved realism in generated

effects.

B. GAN-based Image Transfer

The image-to-image translation aims to learn the mapping

between the source and the target domains, often using a GAN

network. Paired data methods like [19], [20] use the target

image corresponding to each input for the condition in the

discriminator. Unpaired data methods like [21]–[23] decouple

the common content space and the specific style space in an

unsupervised way. But both these methods require amounts

of data from both domains. Besides, the encoding structure of

GANs makes it difficult to decouple appearance and structural

information. When the gap between the two domains is too

large, the result may not be transformed [23]–[25] or have lost

information from the original domain [26].

C. Diffusion Model-based Image Transfer

Recently, denoising diffusion probabilistic models (DDPMs)

have emerged as a promising alternative to GANs in image-

to-image translation tasks. Palette [18] firstly applies the

diffusion model in image translation and achieves good results

in colorization, inpainting, and other tasks. However, this

approach requires the target image as a condition for diffusion,

making it infeasible for unsupervised tasks. For appearance

transfer, DiffuseIT [15] uses the same DINO-ViT guidance as

[16], which greatly improves the realism of the transformation.

However, it still cannot solve the problem of lacking matching

objects in the clothing design task.

D. Neural Style Transfer (NST)

Neural style transfer (NST) has shown great success in

transferring artistic styles. There are mainly two types of

approaches to modeling the style or visual texture in NST.

One is based on statistical methods [27], [28], in which the

style is characterized as a set of spatial summary statistics.

The other is based on non-parametric methods, such as using

Markov Random Field [29], [30], in which they swap the

content neural patches with the most similar ones to transfer

the style. After texture modeling, a pre-trained convolutional

neural network (CNN) network is used to complete the style

transfer. Although NST-based methods work well for global

artistic style transfer, their content/style decoupling process

is not suitable for fashion design. In addition, NST-based

methods assume the transfer is between similar objects or

domains. Tumanyan et al. [16] propose a new NST loss

from DINO-ViT, which succeeds in transferring appearance

between two semantically related objects, such as “cat and

dog” or “orange and ball”. However, in our task, there are no

specific related objects between the clothing image and the

appearance image.
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III. PRELIMINARY OF DENOISING DIFFUSION

PROBABILISTIC MODELS

Diffusion probabilistic models [9]–[11] are a type of latent

variable model that consists of a forward diffusion process

and a reverse diffusion process. In the forward process, we

gradually add noise to the data, and then sample the latent xt

for t = 1, ..., T as a sequence. Noise added to data in each step

is sampled from a Gaussian distribution, and the transmission

can be represented as q(xt|xt−1) = N (
√
1− βtxt−1, βtI),

where the Gaussian variance {βt}Tt=0 can either be learned

or scheduled. Importantly, the final latent encoding by the

forward process can be directly obtained by,

xt =
√
αtx0 +

√

(1− αt)ǫ, ǫ ∼ N (0, I), (1)

where αt = 1 − βt and αt =
∏t

s=1 αs. Then in the reverse

process, the diffusion model learns to reconstruct the data by

denoising gradually. A neural network is applied to learn the

parameter θ to reverse the Gaussian transitions by predicting

xt−1 from xt as follow:

pθ(xt−1|xt) = N (xt−1;µθ(xt, t), σ
2I). (2)

To achieve a better image quality, the neural network takes

the sample xt and timestamp t as input, and predicts the

noise added to xt−1 in the forward process instead of directly

predicting the mean of xt−1. The denoising process can be

defined as:

µθ(xt, t) =
1√
αt

(xt −
1− αt√
1− αt

ǫθ(xt, t)), (3)

where ǫθ(xt, t) is the diffusion model trained by optimizing

the objective, i.e.,

minθL(θ) = Et,x0,ǫ[(ǫ− ǫθ(
√
αtx0) +

√
1− αtǫ, t))

2]. (4)

In the image translation task, there are two mainstream meth-

ods to complete the translation. One is using the conditional

diffusion model, which takes extra conditions, such as text

and labels as input in the denoising process. Then the dif-

fusion model ǫθ in Eq. (3) and Eq. (4) can be replaced

with ǫθ(xt, t, y), where y is the condition. The other type of

method [31] uses pre-trained classifiers to guide the diffusion

model in the denoising process and freezes the weights of the

diffusion model. With the diffusion model and a pre-trained

classifier pφ(y|xt), the denoising process µθ(xt, t) in Eq. (3)

can be supplemented with the gradient of the classifier, i.e.,

µ̂θ(xt, t) = µθ(xt, t) + σt∇logpφ(y|xt).

IV. PROPOSED METHOD

A. Overview of Fashion Design with DiffFashion

Given a clothing image xS
0 and a reference appearance

image xA
0 , our proposed DiffFashion aims to design a new

clothing fashion that preserves the structure in xS
0 and transfers

the appearance from xA
0 while keeping it natural, as shown

in Fig. 2. We list two main challenges in this task. First,

there are no given reference images for the output result since

there is no standard answer for fashion design. Without the

supervision of the ground truth, it is difficult to train the

model. Second, preserving the structure information from the

given input clothing image while transferring the appearance

is also being under-explored. To address those two challenges,

we present the DiffFashon, which is a novel structure-aware

transfer model with the diffusion model. We use the diffusion

model [32] pre-trained on Imagenet [33] for all the denoising

processes in DiffFashion. First, we decouple the foreground

clothing with a generated semantic mask by conditioned labels,

as shown in Fig. 2 (a). Then, we encode the appearance image

xA
0 with DDPM, and denoise it with mask guidance to preserve

the structure information, as shown in Fig. 2 (b). Moreover,

we use the DINO-ViT [17] for both appearance and structure

guidance during the denoising process, as shown in Fig. 2 (c)

and (d). The details are illustrated in the following sections.

B. Mask Generation by Label Condition

To decouple the foreground clothing and background, we

generate a semantic mask for the input clothing image xS
0

with label conditions. The generated semantic mask is also

used for preserving the structure information in later steps.

Existing methods commonly use additional inputs to obtain the

foreground region. However, this leads to increased annotation

expenses. Inspired by [34], we propose a mask generation

approach that can obtain the foreground clothing area without

external information or segmentation models. Our approach

leverages the label-conditional diffusion model to obtain the

desired result.

In the denoising process of the label-conditional diffusion

model, there can be different noise estimates for the same

latent given negative label conditions like phone and bag. For

these different noise estimates, the regions of the foreground

object that are denoised tend to vary little in background

regions but greatly in object regions. By taking the difference

in the noise area, we can obtain the mask of the object to be

edited, as shown in Fig. 2(a).

Instead of generating a mask with the latent of the forward

process like [34], we observe that in the denoising process,

xS
t has less perceptual appearance information than xS

qt (the

image in the forward process with timestamp t). Therefore,

we generate a mask from the image in the denoising process

xS
t instead of the image xS

qt in the forward process. Although

the structure of xS
t may have some slight variations, it still

provides a better representation of the overall structure infor-

mation of the foreground object.

Specifically, we input the clothing image xS
0 into the diffu-

sion model. After DDPM encoding in the forward process, we

obtain the image latent XS
T/2 in half of the reverse process.

Denote the foreground label as yp, representing the foreground

clothing object. Then the noise map for the foreground cloth-

ing can be obtained by

Mp = ǫθ(x̂
S
T/2, T/2, yp), (5)

where x̂S
T/2 is the estimated source image predicted from xS

T/2

by Tweedie’s method [35], i.e.,

x̂t =
xT/2
√

ᾱT/2
−
√

1− ᾱT/2
√

ᾱT/2
ǫθ(xT/2, T/2, yp). (6)
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Fig. 2. The pipeline of our approach. (a): We add noise to clothing image x
S
0

, and then use different label conditions to estimate the noise in the denoising

process. The semantic mask of the x
S
0

can be obtained from the noise difference. (b): We denoise the reference appearance image x
A
0

. In the denoising
process, we use the mask in (a) to replace the background with pixel values obtained from the encoding process at the same timestamp. (c) and (d): We use
DINO-VIT features to compute structure loss between x

A
t

and x
S
0

, appearance loss between x
A
t

and x
A
0

, to guide the denoising process. Purple dots and
yellow dots represent the denoising process with the same timesteps respectively.

Denote non-foreground labels as yn, representing negative

objects. We use N different non-foreground label conditions

to get an averaged noise map, i.e.,

Mn =
1

N

N
∑

i=1

ǫθ(x̂
S
T/2, T/2, yi), (7)

where i ∈ {1, ..., N}. The difference between the two noise

maps Mp and Mn can be obtained. Then we set a threshold

for binarization, which returns an editable semantic mask M
for the foreground clothing region.

C. Mask-guided Structure Transfer Diffusion

It is difficult to transfer the appearance of the original image

to a new fashion clothing image when the gap between the

two domains is too large [16]. Because such methods control

the appearance by a single loss of guidance, the redundant

appearance information of the structure clothing reference

image cannot be completely eliminated. Besides, when using

a natural non-clothing image for appearance reference, the

generated texture maybe not be suitable for clothing. Because

these models only transfer the style or appearance. The ap-

pearance cannot be converted to a suitable texture material like

cotton for clothing. In DiffFashion, to address this problem,

rather than transferring from the input clothing image xS
0 , we

transfer from the reference appearance image xA
0 to the output

fashion clothing image with the guidance of the structural

information of the input clothing image.

Inspired by [36], it has been shown that for the same

DDPM encoding latent with different label conditions used for

denoising, the resulting natural images have similar textures

and semantic structures. We use the latent xA
t of the reference

appearance image to transfer more appearance information

to the output fashion. Besides, the texture of the appearance

image can be transferred more realistic and suitable for cloth-

ing in the denoising process. Meanwhile, the semantic mask

M obtained from the previous step is used to preserve the

structure of the clothing image. As shown in Fig. 2(b), the

appearance image xA
0 is first used to encode by the forward

process of DDPM. Then the mask-guided denoising process

is employed.

Specifically, at each step in the denoising process, we
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estimate the new prediction xA
t from the diffusion model as

follows,

xA
t =

1√
αt+1

(xA
t+1 −

1− αt+1√
1− αt+1

ǫθ(x
A
t+1, t+ 1, yp)). (8)

Then we combine the transferred foreground appearance xA
t

and the clothing image of corresponding timestamp xS
qt with

the generated mask M as guidance, i.e.,

x̃A
t = M ·xA

t +(1−M) · [ωmix ·xS
qt +(1−ωmix) ·xA

t ], (9)

where ωmix is the mix ratio of the appearance image and

the clothing image. This change ensures that the appearance

information in the mask is transferred, while other structural

information keeps consistent with the clothing image.

D. ViT Feature Guidance

As mentioned in [15], [16], the structure features and

appearance features can be separated with DINO-ViT [17].

We use both appearance guidance and structure guidance in

the denoising process to keep the output image realistic.

Following [15], [16], we employ the [CLS] tokens in the

last layer of ViT to guide the semantic appearance information

as follows,

Lapp(x
A
0 , x̂

A
t ) =

||eL[CLS](x
A
0 )− eL[CLS](x̂

A
t )||2 + λMSE ||xA

0 − x̂A
t ||2,

(10)

where eL[CLS] is the last layer [CLS] token, and λMSE is the

coefficient of global statistic loss between images. To better

leverage the appearance between the object and the appearance

image, we use the object semantic mask M to remove the

background pixel of x̂A
t in Eq. 10, and only compute the

appearance loss of the object within the mask.

In addition, we adopt a patch-wise method in the structural

loss to better leverage the local features. We adopt the i-th key

vector in the l-th attention layer of the ViT model, denoted as

kli(xt), to guide the structural information of the i-th patch of

the original clothing image as follows,

Lstruct(x
A
0 , x̂

A
t ) =

−
∑

i

log

(

sim(kl,Si , kl,Ai )

sim(kl,Si , kl,Ai ) +
∑

j 6=i sim(kl,Si , kl,Aj )

)

,
(11)

where sim(·, ·) is the exponential value of normalized cosine

similarity, i.e.,

sim(kl,Si , kl,Aj ) = exp
(

cos
(

kli(x
S
0 ), k

l
j(x̂

A
t )
)

/τ
)

, (12)

and τ is the temperature parameter. By using the loss in

Eq. (11), we minimize the loss between keys at the same

position of two images while maximizing the loss between

keys of different positions. Then our total loss for guidance as

follow:

Ltotal = λstructLstruct + λappLapp, (13)

where λstruct, λapp are the coefficient of structure loss and

appearance loss.

TABLE I
OVERALL INFORMATION ABOUT THE OceanBag DATASET.

Dataset Quantity Image size Complex ratio

Handbag 6,000 256×256 0.16
Marine life 2,400 256×256 0.43

TABLE II
RESULTS OF THE USER STUDY. THE OUTPUT FASHION IMAGES ARE

EVALUATED BASED ON THEIR REALISM, STRUCTURE, AND APPEARANCE

SCORES, RANGING FROM 0 TO 100. THE OVERALL PERFORMANCE IS THE

AVERAGE OF THE THREE SCORES. THE BEST PERFORMANCE IS SHOWN IN

BOLD AND THE SECOND BEST IS SHOWN IN LIGHT BLUE.

Method Overall Realism Structure Appearance

DiffuseIT 67.09 75.53±4.68 88.46±5.40 37.27±8.36

SpliceViT 60.98 68.44±4.36 80.80±7.82 33.70±8.32

WCT2 65.45 82.89± 5.42 95.76± 1.84 17.69±5.77

STROTSS 63.00 63.33±6.43 82.55±6.65 43.11±8.93

Ours 75.04 81.15±4.76 91.07±3.82 52.89± 7.92

TABLE III
EVALUATION RESULTS BASED ON OTHER MODELS. THE BEST

PERFORMANCE IS SHOWN IN BOLD AND THE SECOND BEST IS SHOWN IN

LIGHT BLUE. “C.LOSS”, “M.RECALL” AND “M.PREC.” REPRESENT

CLASSIFICATION LOSS, MASK-RCNN RECALL, AND MASK-RCNN
PRECISION, RESPECTIVELY.

Method C.loss M.recall M.precision CDH

DiffuseIT 7.62± 4.38 0.17 0.16 0.13
SpliceViT 6.03± 3.68 0.03 0.03 0.07
WCT2 9.56± 4.16 0.53 0.51 0.23
STROTSS 11.20± 3.52 0.06 0.06 0.43

Ours 5.93 ± 4.72 0.2 0.17 0.22

V. EXPERIMENTS

In this section, we describe our fashion design dataset and

experiment settings. We also demonstrate the qualitative and

quantitative results to show the effectiveness of our proposed

method.

A. Dataset

To our best knowledge, there is no specific reference-

based fashion design dataset currently. Thus, we collect a

new dataset, namely OceanBag, with real handbag images and

ocean animal images as reference appearances for generating

new fashion designs. OceanBag has 6,000 photos of handbags

in various scenes and 2,400 pictures of various marine lives

in the real world, among various marine scenes such as fish

swimming on the ocean floor. The 2,400 marine scene images

contain more than 80 kinds of marine organisms, 50% of

which are fish, as well as starfish, crabs, algae, and other

sea creatures, as shown in Fig. 3. In our experiments, we

screened 30 images for experiments based on diversity such

as background complexity, species, and quantity of organisms.

We refer to images with solid backgrounds as simple

backgrounds, while those with real scenes are referred to as

complex backgrounds. The complex ratio in Table I shows the

proportion of complex background images in the dataset. The
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Fig. 3. Samples from our proposed dataset of OceanBag. The left part shows some examples of marine life images, and the right part shows some samples
of bag images.

complex background of the marine biological dataset is usually

real ocean pictures such as the seabed and the deep sea. For

the bag images in the dataset, the complex backgrounds often

include scenes of mall containers or tables.

B. Experimental Setup

We conduct all experiments using a label-conditional diffu-

sion model [32] pre-trained on the ImageNet dataset [33] with

256 × 256 resolution. In all experiments, we use a diffusion

step of T = 60 and re-sampling repetitions of N = 10. In a

single RTX 3090 unit, it takes 20 seconds to generate each

mask and 120 seconds to generate each image. For fairness of

comparison, other parameters in the diffusion model are kept

the same as [15].

In the mask generation part, we set the binarization thresh-

old to -0.2. Due to the stochastic nature of the diffusion

model, we generate masks using three different sets of labels,

including “cellphone, forklift, pillow”, “waffle iron, washer,

guinea pig” and “brambling, echidna, custard apple”. Then

we choose the best one among them for guidance. To ensure

a fair comparison, We run the baseline DiffuseIT [15] three

times as ours.

In the guidance part, to mitigate the uncontrollable effect of

the mask and avoid information loss when the structural gap

between the two objects is too large, we use mask guidance

in the first 50% steps of the denoising stage, and the mix

ratio ωmix is set to 0.98. In the ViT guidance part, we set the

coefficient of appearance loss λapp to 0.1 and 1 for structure

loss λstruct. And we keep other parameters the same as

DiffuseIT [15].

C. Evaluation Methods and Metrics

There is currently no existing automatic metric suitable for

evaluating fashion design across two natural images. To keep

the fashion image realistic, the migration degree of the appear-

ance and the similarity of the structure sometimes are mutually

contradictory when measured. To compare among different

methods, we follow existing appearance transfer/fashion de-

sign works [15], [16], [37]–[40], which rely on human per-

ceptual evaluation to validate the results.

D. Experimental Results

We perform both quantitative and qualitative evaluations on

the OceanBag dataset. We compare our model with Splic-

ingViT [16], DiffuseIT [15] , WCT2 [41] and STROTSS

[42]. Fig. 4 shows qualitative results for all methods. In all

examples, it can be seen that in terms of fashion design, our

method has achieved better performances in terms of real-

ism and structure, while completing appearance transfer. As

for the DINO-ViT-based image-to-image translation methods,

DiffuseIT successfully keeps the structure for most images,

but it shows less appearance similarity. SplicingViT transfers

the appearance well, but its results are far away from realistic

fashion images. NST methods like STROTSS and WCT2

effectively retain the structure of the source image, but WCT2

outputs exhibit limited changes apart from color adjustments.

Although STROTSS successfully transfers the appearance, its

results often suffer from color bleeding artifacts and thus show

less authenticity.

We also conduct a user study to evaluate the samples and

obtain subjective evaluations from participants. Specifically,

we ask 30 users to score all the output fashion images from

all methods for each input pair. Detailed questions we have

asked are as follows: 1) Is the picture realistic? 2) Is the

image’s structure similar to the input image? 3) Is the output

appearance similar to the input appearance image? The scores

range from 0 to 100. The overall score is the average of

the three scores. We show the averaged subjective evaluation

results in Table II. Our model obtains the best score in

the overall performance and appearance correlation, and the

second place in structure similarity and realism. WCT2 shows

the best in realism and structure similarity scores, but it shows

the worst score in appearance correlation because the outputs

are almost unchanged from the inputs except for the overall

color. Both the qualitative and subjective evaluations show the

effectiveness of our proposed method.

Following [16], we also adopt other pre-trained models

to evaluate the result. We use the classifier pre-trained with

the ImageNet dataset given by improved DDPM [32] and

calculate the average classification loss. We also apply Mask-

RCNN pre-trained on the COCO dataset to detect the mask
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Fig. 4. Comparison with other state-of-the-art (SOTA) methods. Our results show better performance in both appearance and structure similarity.

of the object of each method. The results are shown in

Table III. Our model achieves the lowest classification loss.

At the same time, since Mask-RCNN is trained on out-of-

distribution (OOD) data, the overall recall rate is quite low.

Our model demonstrates the second-best performance after

WCT2, but WCT2 only transforms the color for the whole

image. Besides, we calculate the color difference histogram

(CDH) [43] between the result and appearance image for each

method. Our method achieves better appearance similarity

than image translation methods. Although NST methods like

STROTSS have a better CDH, they tend to transfer the whole

image with simple color transformation, as shown in Fig. 4.

E. Ablation Study

In order to verify the effectiveness of the method, we study

the individual components of our technical designs through
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Fig. 5. Illustration of Mask Generation by Label Condition.

Fig. 6. An example of fashion output with a generated messy mask. (a) and (b) are our results with and without mask guidance, respectively. (c) is the result
of DiffuseIT.

Fig. 7. Examples that show the mask effectiveness. (a) and (b) show the results of our method with or without mask guidance, respectively

several ablation studies as illustrated from Fig. 5 to Fig. 9.

1) Mask Generation: We randomly select several bag im-

ages with backgrounds from ImageNet and our dataset. We

keep the same experimental setup as Section V-B and show

the masks in Fig. 5. For most images, it can generate a

foreground object mask that is suitable for our models. Due

to the randomness of diffusion, in the last column, we show

the scene where the mask is not good enough. But even so,

our model still outperforms other models, as shown in Fig. 6.
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Fig. 8. Comparison with label-conditional DiffuseIT. Our results and results
from DiffuseIT with label-conditional diffusion models are shown in (a) and
(b), respectively.

Fig. 9. Examples of the DiffuseIT model with the text guidance. “Handbag”
to “Handbag with marine life pattern” and “Ocean style Handbag” are prompts
for (a) and (b), respectively.

2) Mask Guidance: We conduct an experiment on our

model without the mask guidance part, as shown in Fig. 7.

Fig. 7(a) shows the result without mask guidance and Fig. 7

(b) presents the outputs of our model with mask guidance.

Without mask guidance, in many images, the structure of the

bag is destroyed during diffusion. In the last row of the figure,

we show that for some images, using a mask may reduce the

correlation of appearance, but this is still enough to complete

the transfer task. In order to solve a small number of such

problems, we set the probability of 0.2 when applying without

using mask guidance.

3) Label-Condition: Because our model uses the diffusion

model with label-condition, for a fair comparison, we replace

the diffusion model of diffuseIT with the same model as ours

and use the label “bag” for the condition in the denoising

stage. Fig. 8(a) shows the results of DiffuseIT with label

condition, and Fig. 8(b) presents our method. Our method

still shows better results in structure preservation, appearance

similarity, and authenticity. In addition, We show some results

of a multi-modal guided diffusion model trained on the same

amount of data. Fig. 9 shows the result of DiffuseIT with

the text guidance. “Handbag” to “Handbag with marine life

pattern” and “Ocean style Handbag” are prompts for (a) and

(b), respectively. We can see that a text-guided model cannot

complete the task well.

VI. CONCLUSION AND FUTURE WORK

We tackle a new problem set in the context of fashion

design: designing new clothing fashion from a given clothing

image and a natural appearance image, and keeping the

structure of the clothing with a similar appearance to the

natural image. We propose a novel diffusion-based image-to-

image translation framework by swapping the input latent with

structure transfer. And the model is guided by an automatically

generated foreground mask and both structure and appear-

ance information from the pre-trained DINO-ViT model. The

experimental results have shown that our proposed method

outperforms most baselines, demonstrating that our method

can better balance authenticity and structure preservation while

also achieving appearance migration. Due to the randomness

of diffusion, the mask cannot guarantee good results every

time. In the future, we will try to constrain the diffusion model

using the information condition of other modalities to generate

better masks.
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